sábado, 26 de mayo de 2012

BALANCE DE REACIONES OXIDO-REDUCCION



Reducción-oxidación


La pila Cu-Ag, un ejemplo de reacción redox.

Trozo de metal oxidado (corroído)
Se denomina reacción de reducción-oxidaciónóxido-reducción, o simplemente reacción red-ox, a toda reacción química en la cual existe una transferencia de pares de electrones entre los reactivos, dando lugar a un cambio en los estados de oxidación de los mismos con respecto a los productos.
Para que exista una reacción red-ox, en el sistema debe haber un elemento que ceda electrones y otro que los acepte:
  • El agente reductor es aquel elemento químico que suministra electrones de su estructura química al medio, aumentando su estado de oxidación, es decir, siendo oxidado.
  • El agente oxidante es el elemento químico que tiende a captar esos electrones, quedando con un estado de oxidación inferior al que tenía, es decir, siendo reducido.1
Cuando un elemento químico reductor cede electrones al medio se convierte en un elemento oxidado, y la relación que guarda con su precursor queda establecida mediante lo que se llama un par red-ox. Análogamente, se dice que cuando un elemento químico capta electrones del medio se convierte en un elemento reducido, e igualmente forma un par red-ox con su precursor oxidado.

Contenido

  [ocultar

[editar]Principio de electroneutralidad

El principio de electroneutralidad de Pauling, corresponde a un método de aproximación para estimar la carga en moléculas o iones complejos, Este supone que la carga siempre se distribuye en valores cercanos a 0 (es decir -1, 0, +1).
Dentro de una reacción global redox, se da una serie de reacciones particulares a las cuales se les llama semirreacciones o reacciones parciales.
2e- + Cu2+ → Cu0 Semireacción de Reducción
Fe0 → Fe2+ + 2e- Semirreacción de Oxidación
o más comúnmente, también llamada ecuación general:
Fe0 + Cu2+ → Fe2+ + Cu0
La tendencia a reducir u oxidar a otros elementos químicos se cuantifica por el potencial de reducción, también llamado potencial redox.
Una titulación redox es una en la que un indicador químico indica el cambio en el porcentaje de la reacción redox mediante el viraje de color entre el oxidante y el reductor.

[editar]Oxidación


Oxidación del hierro.
La oxidación es una reacción química muy poderosa donde un elemento cede electrones, y por lo tanto aumenta su estado de oxidación.2 Se debe tener en cuenta que en realidad una oxidación o una reducción es un proceso por el cual cambia el estado de oxidación de un compuesto. Este cambio no significa necesariamente un intercambio de electrones. Suponer esto -que es un error común- implica que todos los compuestos formados mediante un proceso redox son iónicos, puesto que es en éstos compuestos donde sí se da un enlace iónico, producto de la transferencia de electrones.
Por ejemplo, en la reacción de formación del cloruro de hidrógeno a partir de los gases dihidrógeno y dicloruro, se da un proceso redox y sin embargo se forma un compuesto covalente.
Estas dos reacciones siempre se dan juntas, es decir, cuando una sustancia se oxida, siempre es por la acción de otra que se reduce. Una cede electrones y la otra los acepta. Por esta razón, se prefiere el término general de reacciones redox.
La propia vida es un fenómeno redox. El oxígeno es el mejor oxidante que existe debido a que la molécula es poco reactiva (por su doble enlace) y sin embargo es muy electronegativo, casi como elflúor.
La sustancia más oxidante que existe es el catión KrF+ porque fácilmente forma Kr y F+.
Entre otras, existen el permanganato de potasio (KMnO4), el dicromato de potasio (K2Cr2O7), el agua oxigenada (H2O2), el ácido nítrico (HNO3), los hipohalitos y los halatos (por ejemplo el hipoclorito de sodio (NaClO) muy oxidante en medio alcalino y el bromato de potasio (KBrO3)). El ozono (O3) es un oxidante muy enérgico:
Br + O3 → BrO3
El nombre de "oxidación" proviene de que en la mayoría de estas reacciones, la transferencia deelectrones se da mediante la adquisición de átomos de oxígeno (cesión de electrones) o viceversa. Sin embargo, la oxidación y la reducción puede darse sin que haya intercambio de oxígeno de por medio, por ejemplo, la oxidación de yoduro de sodio a yodo mediante la reducción de cloro a cloruro de sodio:
2 NaI + Cl2 → I2 + 2 NaCl
Esta puede desglosarse en sus dos semirreacciones corresponden
  • 2I → I2 + 2 e
  • Cl2 + 2 e → 2 Cl
Ejemplo
El hierro puede presentar dos formas oxidadas:

[editar]Reducción

En químicareducción es el proceso electroquímico por el cual un átomo o ion gana electrones. Implica la disminución de su estado de oxidación. Este proceso es contrario al de oxidación.
Cuando un ion o un átomo se reducen presenta estas características:
Ejemplo
El ion hierro (III) puede ser reducido a hierro (II):
Fe3+ + e → Fe2+
En química orgánica, la disminución de enlaces de átomos de oxígeno a átomos de carbono o el aumento de enlaces de hidrógeno a átomos de carbono se interpreta como una reducción. Por ejemplo:
  • CH≡CH + H2 → CH2=CH2 (el etino se reduce para dar eteno).
  • CH3–CHO + H2 → CH3–CH2OH (el etanal se reduce a etanol).

[editar]Número de oxidación

La cuantificación de un elemento químico puede efectuarse mediante su número de oxidación. Durante el proceso, el número de oxidación del elemento aumenta. En cambio, durante la reducción, el número de oxidación de la especie que se reduce disminuye. El número de oxidación es un número entero que representa el número de electrones que un átomo pone en juego cuando forma un enlace determinado.
El número de oxidación:
  • Aumenta si el átomo pierde electrones (el elemento químico que se oxida), o los comparte con un átomo que tenga tendencia a captarlos.
  • Disminuye cuando el átomo gana electrones (el elemento químico que se reduce), o los comparte con un átomo que tenga tendencia a cederlos.

[editar]Reglas para asignar el número de oxidación

  • El número de oxidación de todos los elementos sin combinar es cero. Independientemente de la forma en que se representen.
  • El número de oxidación de las especies iónicas monoatómicas coincide con la carga del ion.
  • El número de oxidación del hidrógeno combinado es +1, excepto en los hidruros metálicos, donde su número de oxidación es –1 (ej: AlH3, LiH)
  • El número de oxidación del oxígeno combinado es –2, excepto en los peróxidos, donde su número de oxidación es –1 (ej.:Na2O2, H2O2).
  • El número de oxidación en los elementos metálicos, cuando están combinados es siempre positivo y numéricamente igual a la carga del ion.
  • El número de oxidación de los halógenos en los hidrácidos y sus respectivas sales es –1, en cambio el número de oxidación del azufre en su hidrácido y respectivas sales es –2.
  • El número de oxidación de una molécula es cero. O lo que es lo mismo, la suma de los números de oxidación de los átomos de una molécula neutra es cero.

[editar]Ajuste de ecuaciones

Todo proceso redox requiere del ajuste estequiométrico de los componentes de las semireacciones para la oxidación y reducción.
Para reacciones en medio acuoso, generalmente se añaden:
  • en medio ácido iones hidrógeno (H+), moléculas de agua (H2O), y electrones
  • en medio básico hidroxilos (OH), moléculas de agua (H2O), y electrones para compensar los cambios en los números de oxidación.

[editar]Medio ácido

En medio ácido se agregan hidronios (cationes) (H+) y agua (H2O) a las semirreacciones para balancear la ecuación final.
Del lado de la ecuación que haga falta oxígeno se agregarán moléculas de agua, y del lado de la ecuación que hagan falta hidrógenos se agregarán hidronios.
Por ejemplo, cuando el Manganeso (II) reacciona con el Bismutato de Sodio.
Ecuación sin balancear:
Mn^{+2}_{(aq)} + NaBiO_{3(s)} \to Bi^{+3}_{(aq)} + MnO^{-}_{4(aq)}
Oxidación :Mn^{+2}_{(aq)} \to MnO^{-}_{4(aq)} + 5 e^-
Reducción :2e^- + BiO^{-}_{3(s)} \to Bi^{3+}_{(aq)}
Ahora tenemos que agregar los hidronios y las moléculas de agua donde haga falta hidrógenos y donde haga falta oxígenos, respectivamente.
Oxidación: \color{BlueViolet}4H_2O\color{Black} + Mn^{+2}_{(aq)} \to MnO^{-}_{4(aq)} + \color{BlueViolet}8 H^{+}_{(aq)} \color{Black} + 5 e^-
Reducción: 2e^- + \color{BlueViolet}6H^+\color{Black} + BiO^{-}_{3(s)} \to Bi^{3+}_{(aq)} + \color{BlueViolet}3H_2O\color{Black}
Las reacciones se balancearán al momento de igualar la cantidad de electrones que intervienen en ambas semirreacciones. Esto se logrará multiplicando la reacción de una semirreación por el número de electrones de la otra semirreacción (y, de ser necesario, viceversa), de modo que la cantidad de electrones sea constante.
Oxidación: ( 4H_2O + Mn^{+2}_{(aq)} \to MnO^{-}_{4(aq)} + 8 H^{+}_{(aq)} + \color{OliveGreen}5 e^-\color{Black} ) \color{Orange}\times 2\color{Black}
Reducción: ( \color{Orange}2e^-\color{Black} + 6H^+ + BiO^{-}_{3(s)} \to Bi^{3+}_{(aq)} + 3H_2O ) \color{OliveGreen}\times 5\color{Black}
Al final tendremos:
Oxidación: 8H_2O + 2Mn^{+2}_{(aq)} \to 2MnO^{-}_{4(aq)} + 16 H^{+}_{(aq)} + 10 e^-
Reducción: 10e^- + 30H^+ + 5BiO^{-}_{3(s)} \to 5Bi^{3+}_{(aq)} + 15H_2O
Como se puede ver, los electrones están balanceados, así que procedemos a sumar las dos semirreacciones, para obtener finalmente la ecuación balanceada.
\underline{
   \left .
   \begin{array}{rcl}
      8H_2O + 2Mn^{+2}_{(aq)} \to 2MnO^{-}_{4(aq)} + 16 H^{+}_{(aq)} + 10 e^- \\ 
      10e^- + 30H^+ + 5BiO^{-}_{3(s)} \to 5Bi^{3+}_{(aq)} + 15H_2O 
   \end{array}
   \right \Downarrow +
}
14H^+_{(aq)} + 2Mn^{+2}_{(aq)} + 5NaBiO_{3(s)} \to 7H_2O + 2MnO^{-}_{4(aq)} + 5Bi^{3+}_{(aq)} + 5 Na^+_{(aq)}

[editar]Medio básico

En medio básico se agregan iones hidróxilo (aniones) (OH) y agua (H2O) a las semirreacciones para balancear la ecuación final.
Por ejemplo, tenemos la reacción entre el Permanganato de Potasio y el Sulfato de Sodio.
Ecuación sin balancear:
KMnO_4 + Na_2SO_3 + H_2O \to MnO_2 + Na_2SO_4 + KOH \,\!
Separamos las semirreacciones en
Oxidación: SO_3^{-2} \to SO_4^{-2} + 2e^-
Reducción: 3e^- + MnO_4^- \to MnO_2
Agregamos la cantidad adecuada de Hidróxidos y Agua (las moléculas de agua se sitúan en donde hay mayor cantidad de oxígenos).
Oxidación: \color{BlueViolet}2OH^-\color{Black} + SO_3^{-2} \to SO_4^{-2} + \color{BlueViolet}H_2O\color{Black} + 2e-
Reducción: 3e^- + \color{BlueViolet}2H_2O\color{Black} + MnO_4^- \to MnO_2 + \color{BlueViolet}4OH^-\color{Black}
Balanceamos la cantidad de electrones al igual que en el ejemplo anterior.
Oxidación: ( 2OH^- + SO_3^{-2} \to SO_4^{-2} + H_2O + \color{OliveGreen}2 e^-\color{Black} ) \; \color{Orange}\times 3\color{Black}
Reducción: ( \color{Orange}3 e^-\color{Black} + 2H_2O + MnO_4^- \to MnO_2 + 4OH^- ) \; \color{OliveGreen}\times 2\color{Black}
Obtenemos:
Oxidación: 6OH^- + 3SO_3^{-2} \to 3SO_4^{-2} + 3H_2O + 6e^-
Reducción: 6e^- + 4H_2O + 2MnO_4^- \to 2MnO_2 + 8OH^-
Como se puede ver, los electrones están balanceados, así que procedemos a sumar las dos semirreacciones, para obtener finalmente la ecuación balanceada.
\underline{
   \left .
   \begin{array}{rcl}
      6OH^- + 3SO_3^{-2} \to 3SO_4^{-2} + 3H_2O + 6e^-  \\
      6e^- + 4H_2O + 2MnO_4^- \to 2MnO_2 + 8OH^-
   \end{array}
   \right \Downarrow +
}
2KMnO_4 + 3Na_2SO_3 + H_2O \to 2MnO_2 + 3Na_2SO_4 + 2KOH \,\!

[editar]Aplicaciones

En la industria, los procesos redox también son muy importantes, tanto por su uso productivo (por ejemplo la reducción de minerales para la obtención del aluminio o del hierro) como por su prevención (por ejemplo en la corrosión).
La reacción inversa de la reacción redox (que produce energía) es la electrólisis, en la cual se aporta energía para disociar elementos de sus moléculas.

[editar]Oxidaciones y reducciones biológicas


Reducción del coenzima FAD, en forma de ganancia de un par de átomos de hidrógeno (dos protones y dos electrones.
En el metabolismo de todos los seres vivos, los procesos redox tienen una importancia capital, ya que están involucrados en la cadena de reacciones químicas de lafotosíntesis y de la respiración aeróbica. En ambas reacciones existe una cadena transportadora de electrones formada por una serie de complejos enzimáticos, entre los que destacan los citocromos; estos complejos enzimáticos aceptan (se reducen) y ceden (se oxidan) pares de electrones de una manera secuencial, de tal manera que el primero cede electrones al segundo, éste al tercero, etc., hasta un aceptor final que se reduce definitivamente; durante su viaje, los electrones van liberando energía que se aprovecha para sintetizar enlaces de alta energía en forma de ATP.
Otro tipo de reacción redox fundamental en los procesos metabólicos son las deshidrogenaciones, en las cuales un enzima (deshidrogenasa) arranca un par de átomos de hidrógeno a un sustrato; dado que el átomo de hidrógeno consta de un protón y un electrón, dicho sustrato se oxida (ya que pierde electrones). Dichos electrones son captados por moléculas especializadas, principalmente lascoenzimas NAD+NADP+ y FAD que al ganar electrones se reducen, y los conducen a las cadenas transportadoras de electrones antes mencionadas.
El metabolismo implica cientos de reacciones redox. Así, el catabolismo lo constituyen reacciones en que los sustratos se oxidan y las coenzimas se reducen. Por el contrario, las reacciones delanabolismo son reacciones en que los sustratos se reducen y los coenzimas se oxidan. En su conjunto, catabolismo y anabolismo constituyen el metabolismo.

[editar]Consecuencias

En los metales una consecuencia muy importante de la oxidación es la corrosión, fenómeno de impacto económico muy negativo, dado que los materiales adquieren o modifican sus propiedades según a los agentes que estén expuestos, y como actúen sobre ellos.
Combinando las reacciones de oxidación-reducción (redox) en una celda galvánica se consiguen laspilas electroquímicas. Estas reacciones pueden aprovecharse para evitar fenómenos de corrosión no deseados mediante la técnica del ánodo de sacrificio y para la obtención de corriente eléctrica continua.

BALANCE DE REACCIONES QUÍMICAS ESTEQUIOMETRIA


BALANCEO DE ECUACIONES O REACCIONES.

En química, la estequiometría (del griego στοιχειονstoicheion, 'elemento' y μετρονmétrón, 'medida') es el cálculo entre relaciones cuantitativas entre los reactantes y productos en el transcurso de una reacción química.1 2 Estas relaciones se pueden deducir a partir de la teoría atómica, aunque históricamente se enunciaron sin hacer referencia a la composición de la materia, según distintasleyes y principios.
El primero que enunció los principios de la estequiometría fue Jeremias Benjamin Richter (1762-1807), en 1792, quien describió la estequiometría de la siguiente manera:



«La estequiometría es la ciencia que mide las proporciones cuantitativas o relaciones de masa de los elementos químicos que están implicados (en una reacción química)».

Contenido

  [ocultar

Principio

Una reacción química se produce cuando hay una modificación en la identidad química de las sustancias intervinientes; esto significa que no es posible identificar a las mismas sustancias antes y después de producirse la reacción química, los reactivos se consumen para dar lugar a los productos.
A escala microscópica una reacción química se produce por la colisión de las partículas que intervienen ya sean moléculasátomos o iones, aunque puede producirse también por el choque de algunos átomos o moléculas con otros tipos de partículas, tales como electrones o fotones. Este choque provoca que las uniones que existían previamente entre los átomos se rompan y se facilite que se formen nuevas uniones. Es decir que, a escala atómica, es un reordenamiento de los enlacesentre los átomos que intervienen. Este reordenamiento se produce por desplazamientos deelectrones: unos enlaces se rompen y otros se forman, sin embargo los átomos implicados no desaparecen, ni se crean nuevos átomos. Esto es lo que se conoce como ley de conservación de la masa, e implica los dos principios siguientes:
  • El número total de átomos antes y después de la reacción química no cambia.
  • El número de átomos de cada tipo es igual antes y después de la reacción.
En el transcurso de las reacciones químicas las partículas subatómicas tampoco desaparecen, el número total de protonesneutrones y electrones permanece constante. Y como los protones tienen carga positiva y los electrones tienen carga negativa, la suma total de cargas no se modifica. Esto es especialmente importante tenerlo en cuenta para el caso de los electrones, ya que es posible que durante el transcurso de una reacción química salten de un átomo a otro o de una molécula a otra, pero el número total de electrones permanece constante. Esto que es una consecuencia natural de la ley de conservación de la masa se denomina ley de conservación de la carga e implica que:
  • La suma total de cargas antes y después de la reacción química permanece constante.
Las relaciones entre las cantidades de reactivos consumidos y productos formados dependen directamente de estas leyes de conservación, y por lo tanto pueden ser determinadas por una ecuación (igualdad matemática) que las describa. A esta igualdad se le llama ecuación estequiométrica.

[editar]Ecuaciones químicas

Una ecuación química es una representación escrita de una reacción química. Se basa en el uso desímbolos químicos que identifican a los átomos que intervienen y como se encuentran agrupados antes y después de la reacción. Cada grupo de átomos se encuentra separado por símbolos (+) y representa a las moléculas que participan, cuenta además con una serie de números que indican la cantidad de átomos de cada tipo que las forman y la cantidad de moléculas que intervienen, y con una flecha que indica la situación inicial y la final de la reacción. Así por ejemplo en la reacción:
\mathrm{O_2 + 2\,H_2 \to 2H_2O}
Tenemos los grupos de átomos (moléculas) siguientes:
  • O2
  • H2
  • H2O

[editar]Subíndices

Los subíndices indican la atomicidad, es decir la cantidad de átomos de cada tipo que forman cada agrupación de átomos (molécula). Así el primer grupo arriba representado, indica a una molécula que está formada por 2 átomos de oxígeno, el segundo a una molécula formada por 2 átomos dehidrógeno, y el tercero representa a un grupo de dos átomos de hidrógeno y uno de oxígeno, es decir a la molécula agua.

[editar]Coeficiente estequiométrico

Es un número que funciona en cierta forma como un multiplicador indicando el número de moléculas de un determinado tipo que participa en una ecuación química dada. En el ejemplo anterior:
\mathrm{CH_4 + 2\,O_2 \to CO_2 + 2\,H_2O}
El coeficiente del metano es 1, el del oxígeno 2, el del dióxido de carbono 1 y el del agua 2. Los coeficientes estequiométricos son en principio números enteros, aunque para ajustar ciertas reacciones alguna vez se emplean números fraccionarios.
Cuando el coeficiente estequiométrico es igual a 1, no se escribe. Por eso, en el ejemplo CH4 y CO2no llevan ningún coeficiente delante.
Así por ejemplo
  • O2
Debe leerse como 1(O2) es decir, un grupo de moléculas de oxígeno. Y la expresión:
  • 2H2O
Debe leerse como 2(H2O), es decir dos grupos o moléculas, cada uno de los cuales se encuentra formado por dos átomos de hidrógeno y uno de oxígeno.

[editar]Lectura de una ecuación química

Dado que una ecuación química es una representación simplificada o mínima de una reacción química es importante considerar todos los datos representados, perder de vista a alguno significa no entender realmente la situación representada. Los símbolos y subíndices representan a las especies químicasque participan, y los coeficientes representan al número de moléculas de cada tipo que se encuentran participando de la reacción.
Finalmente la flecha indica cual es el sentido predominante en el cual la reacción química progresa. Así en el ejemplo anterior vemos que CH4 y O2 se encuentran en la situación "antes de", es decir del lado de los reactivos y H2O y CO2 se encuentran en la situación de "después de", es decir del lado de los productos. La ecuación completa debería leerse así:



«Una molécula de metano (CH4) reacciona químicamente con dos moléculas de Oxígeno diatómico (O2) para formar una molécula de dióxido de carbono (CO2) y dos moléculas de agua (2H2O)»

[editar]Balance de materia

Se dice que una ecuación química se encuentra ajustada, equilibrada o balanceada cuando respeta laley de conservación de la materia, según la cual la cantidad de átomos de cada elemento debe ser igual del lado de los reactivos (antes de la flecha) y en lado de los productos de la reacción (después de la flecha).
Para balancear una ecuación, se deben ajustar los coeficientes, y no los subíndices. Esto es así porque cada tipo de molécula tiene siempre la misma composición, es decir se encuentra siempre formada por la misma cantidad de átomos, si modificamos los subíndices estamos nombrando a sustancias diferentes:
H2O es agua común y corriente, pero H2O2 es peróxido de hidrógeno una sustancia química totalmente diferente. Al modificar los coeficientes sólo estamos diciendo que ponemos más o menos de tal o cual sustancia.
Por ejemplo, en la reacción de combustión de metano (CH4), éste se combina con oxígeno molecular(O2) del aire para formar dióxido de carbono (CO2) y agua. (H2O). La reacción sin ajustar será:
\mathrm{a \cdot CH_4 + b \cdot O_2 \to c \cdot CO_2 + d \cdot H_2O}
En esta ecuación, las incógnitas son abc y d, que son los denominados coeficientes estequiométricos. Para calcularlos, debe tenerse en cuenta la ley de conservación de la materia, por lo que la suma de los átomos de cada elemento debe ser igual en los reactivos y en los productos de la reacción. Existen tres métodos principales para balancear una ecuación estequiométrica, que son, el método de tanteo, el método algebraico y el método de ion-electrón para ecuaciones de tipo redox.

[editar]Método de balanceo por tanteo

El método de tanteo se basa simplemente en modificar los coeficientes de uno y otro lado de la ecuación hasta que se cumplan las condiciones de balance de masa. No es un método rígido, aunque tiene una serie de delineamientos principales que pueden facilitar el encontrar rápidamente la condición de igualdad.
  • Se comienza igualando el elemento que participa con mayor estado de oxidación en valor absoluto.
  • Se continúa ordenadamente por los elementos que participan con menor estado de oxidación.
  • Si la ecuación contiene oxígeno, conviene balancear el oxígeno en segunda instancia.
  • Si la ecuación contiene hidrógeno, conviene balancear el hidrógeno en última instancia.
En el ejemplo, se puede observar que el elemento que participa con un estado de oxidación de mayor valor absoluto es el carbono que actúa con estado de oxidación (+4), mientras el oxígeno lo hace con estado de oxidación (-2) y el hidrógeno con (+1).
Comenzando con el carbono, se iguala de la forma más sencilla posible, es decir con coeficiente 1 a cada lado de la ecuación, y de ser necesario luego se corrige.
\mathrm{1CH_4 + b \cdot O_2 \to 1CO_2 + d \cdot H_2O}
Se continúa igualando el oxígeno, se puede observar que a la derecha de la ecuación, así como está planteada, hay 3 átomos de oxígeno, mientras que a la izquierda hay una molécula que contiene dos átomos de oxígeno. Como no se deben tocar los subíndices para ajustar una ecuación, simplemente añadimos media molécula más de oxígeno a la izquierda:
\mathrm{CH_4 + O_2 + \cfrac{1}{2}O_2 \to CO_2 + d \cdot H_2O}
O lo que es lo mismo:
\mathrm{CH_4 + \cfrac{3}{2}O_2 \to CO_2 + d \cdot H_2O}
Luego se iguala el hidrógeno. A la izquierda de la ecuación hay cuatro átomos de hidrógeno, mientras que a la derecha hay dos. Se añade un coeficiente 2 frente a la molécula de agua para balancear el hidrógeno:
\mathrm{CH_4 + \cfrac{3}{2}O_2 \to CO_2 + 2H_2O}
El hidrógeno queda balanceado, sin embargo ahora se puede observar que a la izquierda de la ecuación hay 3 átomos de oxígeno (3/2 de molécula) mientras que a la derecha hay 4 átomos de oxígeno (2 en el óxido de carbono (II) y 2 en las moléculas de agua). Se balancea nuevamente el oxígeno agregando un átomo más (1/2 molécula más) a la izquierda:
\mathrm{CH_4 + \cfrac{3}{2}O_2 + \cfrac{1}{2}O_2  \to CO_2 + 2H_2O}
O lo que es lo mismo:
\mathrm{CH_4 + 2O_2  \to CO_2 + 2H_2O}
Ahora la ecuación queda perfectamente balanceada. El método de tanteo es útil para balancear rápidamente ecuaciones sencillas, sin embargo se torna súmamente engorroso para balancear ecuaciones en las cuales hay más de tres o cuatro elementos que cambian sus estados de oxidación. En esos casos resulta más sencillo aplicar otros métodos de balanceo.

[editar]


[editar]Mezcla, proporciones y condiciones estequiométricas

Cuando los reactivos de una reacción están en cantidades proporcionales a sus coeficientes estequiométricos se dice:
  • La mezcla es estequiométrica;
  • Los reactivos están en proporciones estequiométricas;
  • La reacción tiene lugar en condiciones estequiométricas;
Las tres expresiones tienen el mismo significado.
En estas condiciones, si la reacción es completa, todos los reactivos se consumirán dando las cantidades estequiométricas de productos correspondientes.
Si no en esta forma, existirá el reactivo limitante que es el que está en menor proporción y que con base en él se trabajan todos los cálculos.
Ejemplo
Masa atómica del oxígeno = 15,9994.
Masa atómica del carbono = 12,0107.
La reacción es:
 \mathrm{C + O_2 \Rightarrow CO_2}
para formar una molécula de dióxido de carbono, hacen falta un átomo de carbono y dos de oxígeno, o lo que es lo mismo, un mol de carbono y dos mol de oxígeno.
 
   \begin{array}{rcl}
      1 \; mol \; de \; carbono          & \longrightarrow & 2 \; mol \; de \; oxigeno \\
      12,0107 \; gramos \; de \; carbono & \longrightarrow & 2 \cdot 15,9994 \; gramos \; de \; oxigeno \\
      100 \; gramos \; de \; carbono     & \longrightarrow & x  \; gramos \; de \; oxigeno
   \end{array}
despejando x:
 x = \mathrm{\frac{2 \cdot 15,9994 \; gramos \; de \; oxigeno \cdot 100 \; gramos \; de \; carbono}{12,0107 \; gramos \; de \; carbono}}
realizadas las operaciones:
 x = \mathrm{266,41 \; gramos \; de \; oxigeno}

[editar]Cálculos estequiométricos

Los cálculos estequiométricos se basan en las relaciones fijas de combinación que hay entre las sustancias en las reacciones químicas balanceadas. Estas relaciones están indicadas por los subíndices numéricos que aparecen en las fórmulas y por los coeficientes. Este tipo de cálculos es muy importante y se utilizan de manera rutinaria en el análisis químico y durante la producción de las sustancias químicas en la industria. Los cálculos estequiométricos requieren una unidad química que relacione las masas de los reactantes con las masas de los productos. Esta unidad química es elmol.

[editar]